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Abstract

Since Pawlak defined the notion of rough sets in 1982, many authors made wide research studying rough sets in the
ordinary case and the fuzzy case. This paper introduced a new style of rough fuzzy sets based on a fuzzy ideal ℓ on
a universal finite set X. New lower and new upper fuzzy sets are introduced, and consequently, fuzzy interior and
fuzzy closure operators of a rough fuzzy set are discussed. These definitions, if ℓ is restricted to ℓ◦ = {0}, imply the
fuzzification of previous definitions given in the ordinary case, and moreover in the crisp case, we get exactly these
previous definitions. The new style gives us a better accuracy value of roughness than the previous styles. Rough fuzzy
connectedness is introduced as a sample of applications on the recent style of roughness.
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1 Introduction

The concept of rough sets was introduced by Pawlak [14] in 1982 based on there are some objects in a vague area
called the boundary region that can not be determined by a set or its complement. Rough sets depends on a relation
R defined on the universal finite set X, and the pair (X,R) is called an approximation space. Firstly, rough sets was
given by some equivalence relation. Many authors studied rough sets based on more generalized relations on X, for
example see [1, 2, 9, 19]. There are lower set, upper set and consequently a boundary region that became an essential
role in artificial intelligence, granular computing and decision analysis. The generated topology τ on an approximation
space (X,R) that represent the topological properties of rough sets were studied by many authors (ex. [17, 21]). Many
fuzzification studies were given to generalize rough sets as in the literature [4, 5, 12, 13, 15, 18]. The effect of defining
a fuzzy ideal in [16] on the fuzzy topological spaces and the fuzzy approximation spaces were studied in [3, 7, 10].

Based on the paper in [8], if we combined the definitions given in [11] and the definitions given in [9] that used an
ideal on X, then we get a more general form of roughness and a better accuracy value of the rough set. Thus, assigning
an ideal in defining the lower and upper sets in some approximation space is a generalization of roughness.

Considering a fuzzy ideal ℓ, as in [16], on a fuzzy approximation space (X,R), we will define rough fuzzy sets in a
new pattern. Then, we show that under restrictions (ℓ = {0}), the new definitions give the fuzzification of the definitions
of [1, 2, 9, 11, 14, 19], and in the crisp case, it will be exactly the same definitions of [1, 2, 9, 11, 14, 19] in as ordinary
case. Defining a more generalized accuracy value is given in this paper. As a characterization of the definition of rough
fuzzy sets and as a generalization of connectedness in fuzzy topological spaces given in [6], we introduce the concept of
rough fuzzy connectedness.

Through the paper, let X be a finite set of objects and I the closed unit interval [0, 1]. IX denotes all fuzzy
subsets of X, and λc(x) = 1−λ(x), ∀x ∈ X,∀λ ∈ IX . A constant fuzzy set t for all t ∈ I is defined by t(x) = t, ∀x ∈ X.
Infimum and supremum of a fuzzy set λ ∈ IX are given as: inf λ =

∧
x∈X

λ(x) and sup λ =
∨

x∈X

λ(x). If f : X → Y is a

mapping, µ ∈ IX , ν ∈ IY , then (f(µ))(y) =
∨

x∈f−1(y)

µ(x) ∀y ∈ Y and f−1(ν) = (ν ◦ f).
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Recall that the fuzzy difference between two fuzzy sets was defined in [7] as:

(λ ∧̄ µ) =

{
0 if λ ≤ µ,
λ ∧ µc otherwise

(1)

A subset ℓ ⊂ IX is called a fuzzy ideal [16] on X if it satisfy the following conditions:

(1) 0 ∈ ℓ,

(2) If ν ≤ µ and µ ∈ ℓ, then ν ∈ ℓ for all µ, ν ∈ IX ,

(3) If µ ∈ ℓ and ν ∈ ℓ, then (µ ∨ ν) ∈ ℓ for all µ, ν ∈ IX .

Usually, we consider the proper fuzzy ideal ℓ (1 ̸∈ ℓ). Denote a fuzzy ideal ℓ◦ for the fuzzy ideal including only 0.

2 Lower, upper and boundary region fuzzy sets

In the ordinary case, we have the following:

(1) (Pawlak [14]) Let R be an equivalence relation on X, [x]R be the equivalence class containing x. For any subset
A of X, the lower approximation R(A) and the upper approximation R̄(A) are defined as:

R(A) = {x ∈ X : [x]R ⊆ A}, R̄(A) = {x ∈ X : [x]R ∩A ̸= ∅}.

(2) (Yao [19]) Let R be a binary relation on X. For any subset A of X, the lower approximation R(A) and the upper
approximation R̄(A) are defined as:

R(A) = {x ∈ X : xR ⊆ A}, R̄(A) = {x ∈ X : xR ∩A ̸= ∅},

where xR is called the after set of x defined as: xR = {y ∈ X : xRy}. Moreover, Rx is called the before set of x
defined as: Rx = {y ∈ X : yRx}.

(3) (Allam [2]) Let R be a reflexive binary relation on X, < p > R is the intersection of all the after sets xR containing
p. Then, for any subset A of X, the lower approximation R(A) and the upper approximation R̄(A) are defined
as:

R(A) = {x ∈ X : < x > R ⊆ A}, R̄(A) = {x ∈ X : < x > R ∩A ̸= ∅},

where < p > R is defined as:

< p > R =

{ ∩
p∈xR

xR if ∃x : p ∈ xR,

∅ otherwise

Moreover,

R < p > =

{ ∩
p∈Rx

Rx if ∃x : p ∈ Rx,

∅ otherwise

(4) (Kandil [9]) Let R be a reflexive relation on X and I be an ideal on X. For any subset A of X, the lower
approximation R(A) and the upper approximation R̄(A) are defined as:

R(A) = {x ∈ A : < x > R ∩Ac ∈ I},

R̄(A) = A ∪ {x ∈ X : < x > R ∩A ̸∈ I}.
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(5) (Kozae [11]) Let R be a binary relation on X. For any subset A of X, the lower approximation R(A) and the
upper approximation R̄(A) are defined as:

R(A) = {x ∈ X : R < x > R ⊆ A},

R̄(A) = {x ∈ X : R < x > R ∩A ̸= ∅},

where R < p > R is defined as: R < p > R = < p > R ∩R < p >.

The previous definitions are given for the roughness of an approximation space (X,R) in the ordinary case.

Here, we will define rough fuzzy sets in a fuzzy approximation space (X,R) in a generalized form.

Definition 2.1. Let X be a finite set, R a fuzzy relation on X. Then, for any x ∈ X, define the fuzzy sets xR,Rx ∈ IX

as follow (see [20]):
xR(y) = R(x, y) and Rx(y) = R(y, x) ∀y ∈ X. (2)

Define for any a ∈ X, the fuzzy sets < a > R, R < a >∈ IX as follow:

< a > R =
∧

x∈X,R(x,a)>0

xR and R < a >=
∧

x∈X,R(a,x)>0

Rx. (3)

For any a ∈ X, define R < a > R : X → I as follows:

R < a > R =< a > R ∧ R < a > . (4)

Definition 2.2. For every x ∈ X, define λ∗, λ
∗ ∈ IX of a fuzzy set λ ∈ IX by:

λ∗(x) =


(
∨

z∈X

R < z > R (x))c if R < x > R ∧ λc ̸∈ ℓ and R < x > R ∧ λ ̸∈ ℓ

1 if R < x > R ∧ λc ∈ ℓ
0 if R < x > R ∧ λc ̸∈ ℓ and R < x > R ∧ λ ∈ ℓ

(5)

λ∗(x) =


∨

z∈X

R < z > R (x) if R < x > R ∧ λ ̸∈ ℓ and R < x > R ∧ λc ̸∈ ℓ

0 if R < x > R ∧ λ ∈ ℓ
1 if R < x > R ∧ λ ̸∈ ℓ and R < x > R ∧ λc ∈ ℓ

(6)

The roughness of a fuzzy set λ ∈ IX is defined by:

λR = λ ∧ λ∗ and λR = λ ∨ λ∗. (7)

λR is the lower fuzzy set of λ and λR is the upper fuzzy set of λ. The boundary fuzzy region of λ is λB given by:
λB = λR ∧̄ λR. The pair (X,R) will be called rough fuzzy approximation space.

Definition 2.3. For every rough fuzzy set λ ∈ IX , define the accuracy fuzzy set, α(λ) ∈ IX , for all x ∈ X, by the
following

α(λ)(x) =

 0 if λR = 1 and λR = 0,
(λR(x)− λ(x))c ∧ (λ(x)− λR(x))

c if λR ̸≤ λR,
1 otherwise,

(8)

and moreover the accuracy value of the rough fuzzy set λ is given by Inf(α(λ)).

Whenever λR be so that λR ≤ λR, we get that λ = λR = λR and then, λB = 0 and Inf(α(λ)) = 1. If λR = 0 and
λR = 1, then λB = 1 and Inf(α(λ)) = 0. Otherwise, λB = λR ∧ (λR)

c and 0 < Inf(α(λ)) < 1. That is, the largest
boundary fuzzy set is associated with the lowest accuracy value and the converse is true. If Inf(α(λ)) = 1, then λ is
crisp with respect to R (λR = λR and λ is precise with respect to R). If Inf(α(λ)) = 0, then λ is totally rough with
respect to R. Moreover, if 0 < Inf(α(λ)) < 1, then λ is rough with respect to R.
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Lemma 2.4. Let R be a fuzzy relation on X, ℓ be a fuzzy ideal on X and λ, µ ∈ IX . Then, the following properties
hold:

(1) λ∗ = ((λc)∗)
c,

(2) 0
∗
= 0 and 1∗ = 1,

(3) λ ≤ µ implies λ∗ ≤ µ∗ and λ∗ ≤ µ∗,

(4) (λ ∧ µ)∗ ≤ λ∗ ∧ µ∗,

(5) (λ ∨ µ)∗ ≥ λ∗ ∨ µ∗,

(6) (λ ∧ µ)∗ ≤ λ∗ ∧ µ∗,

(7) (λ ∨ µ)∗ ≥ λ∗ ∨ µ∗,

(8) If λ ∈ ℓ, then λ∗ = 0. Moreover , if λc ∈ ℓ, then λ∗ = 1.

Proof. For (1): It is clear that (λ∗)c = (λc)∗, (λ∗)
c = (λc)∗ and thus λ∗ = ((λc)∗)

c and λ∗ = ((λc)∗)c.
For (2): we have (0)∗(x) = 0 ∀x ∈ X from Equation 6, and (1)∗(x) = 1 ∀x ∈ X from Equation 5, and then 0

∗
= 0,

1∗ = 1.
For (3): It is proved from the definition of the fuzzy ideal and Equations 5, 6.
For (4): we get it directly using the result in (3).
For (5): we get it directly using the result in (3).
For (6): we get that λ∗ ∧ µ∗ ≥ (λ ∧ µ)∗ directly.
For (7): we get that (λ ∨ µ)∗ ≥ λ∗ ∨ µ∗ directly.
For (8): Since λ ∈ ℓ implies that R < x > R ∧ λ ∈ ℓ, and thus λ∗(x) = 0 ∀x ∈ X. Hence, λ∗ = 0. Similarly, λc ∈ ℓ

implies that R < x > R ∧ λc ∈ ℓ, and thus λ∗(x) = 1 ∀x ∈ X. Hence, λ∗ = 1.

Note that: if we have the trivial fuzzy ideal ℓ = IX , then λ∗ = 1 and λ∗ = 0, and hence λR = λR = λ, and therefore
any fuzzy set has accuracy value Inf(α(λ)) = 1.

Remark 2.5. Let R be a fuzzy relation on X, ℓ be a fuzzy ideal on X and λ, µ ∈ IX . Then, the following results hold
in general.

(1) λ ̸≤ λ∗ ̸≤ λ∗ ̸≤ λ and λ ̸≤ λ∗ ̸≤ λ∗ ̸≤ λ,

(2) (λ ∧ µ)∗ ̸≥ λ∗ ∧ µ∗ and (λ ∧ µ)∗ ̸≥ λ∗ ∧ µ∗,

(3) (λ ∨ µ)∗ ̸≤ λ∗ ∨ µ∗ and (λ ∨ µ)∗ ̸≤ λ∗ ∨ µ∗,

(4) λ∗ = 0 ; λ ∈ ℓ.

(5) λ∗ = 1 ; λc ∈ ℓ.

The following example proves the results in Remark 2.5.

Example 2.6. Let R be a fuzzy relation on a set X = {a, b, c, d} as shown down.

R a b c d

a 0 0.2 1 0.5
b 0.6 0 0.8 0.5
c 1 0.5 0.6 0.6
d 0.9 0.6 1 1

aR = {0, 0.2, 1, 0.5}, bR = {0.6, 0, 0.8, 0.5}, cR = {1, 0.5, 0.6, 0.6}, dR = {0.9, 0.6, 1, 1} and Ra = {0, 0.6, 1, 0.9},
Rb = {0.2, 0, 0.5, 0.6}, Rc = {1, 0.8, 0.6, 1}, Rd = {0.5, 0.5, 0.6, 1}. Then, < a > R = {0.6, 0, 0.6, 0.5}, < b > R =
{0, 0.2, 0.6, 0.5}, < c > R = {0, 0, 0.6, 0.5}, < d > R = {0, 0, 0.6, 0.5} and R < a >= {0.2, 0, 0.5, 0.6}, R < b >=
{0, 0.5, 0.6, 0.9}, R < c >= {0, 0, 0.5, 0.6}, R < d >= {0, 0, 0.5, 0.6} and then, R < a > R = {0.2, 0, 0.5, 0.5},
R < b > R = {0, 0.2, 0.6, 0.5}, R < c > R = {0, 0, 0.5, 0.5}, R < d > R = {0, 0, 0.5, 0.5}.
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(1) Consider a fuzzy ideal ℓ on X so that ν ∈ ℓ ⇔ ν ≤ 0.4, then we compute λ∗, λ
∗ for a fuzzy set λ =

{0.1, 0.8, 0.4, 0.6} as follow:
λ∗ = {0.8, 0.8, 0.4, 0.5}, λ∗ = {0.2, 0.2, 0.6, 0.5}. Hence, λ ̸≤ λ∗ ̸≤ λ∗ ̸≤ λ and λ ̸≤ λ∗ ̸≤ λ∗ ̸≤ λ, and thus (1) holds.

(2) Let µ = {0.6, 0.2, 0.9, 0.2}, we get that µ∗ = {0.2, 0.2, 0.6, 0.5}, µ∗ = {0.8, 0.8, 0.4, 0.5}, and then µ∗ = λ∗ =
{0.2, 0.2, 0.6, 0.5}, µ∗ = λ∗ = {0.8, 0.8, 0.4, 0.5}.

For λ ∧ µ = {0.1, 0.2, 0.4, 0.2}, we get that (λ ∧ µ)∗ = 0. Hence, λ∗ ∧ µ∗ = {0.2, 0.2, 0.6, 0.5} ̸≤ 0 = (λ ∧ µ)∗. Also,
we get that (λ ∧ µ)∗ = 0 ̸≥ {0.8, 0.8, 0.4, 0.5} = λ∗ ∧ µ∗. Thus, (2) is proved.

(3) Again, for λ∨µ = {0.6, 0.8, 0.9, 0.6}, we get that (λ∨µ)∗ = 1. Hence, (λ∨µ)∗ = 1 ̸≤ λ∗∨µ∗ = {0.8, 0.8, 0.4, 0.5}.
Also, we get that

(λ ∨ µ)∗ = 1 ̸≤ {0.2, 0.2, 0.6, 0.5} = λ∗ ∨ µ∗.

Thus, (3) is proved.
(4) Now define a fuzzy ideal ℓ on X so that ν ∈ ℓ ⇔ ν ≤ 0.5, and consider a fuzzy set λ = {0.1, 0.8, 0.4, 0.6}. We

compute λ∗, λ
∗ as follow:

λ∗ = {0, 0, 0, 0} = 0, λ∗ = {1, 0, 1, 1}.

That is, λ∗ = 0 while λ ̸∈ ℓ. That is (4) is proved.
(5) Moreover, if ℓ is defined on X so that ν ∈ ℓ ⇔ ν ≤ 0.6, then λ∗ = 1 while λc ̸∈ ℓ, and thus (5) is proved.

Lemma 2.7. The lower and upper fuzzy sets of fuzzy sets satisfy the following properties:

(1) λR ≤ λ ≤ λR,

(2) 0R = 0
R
= 0 and 1R = 1

R
= 1,

(3) (λ ∨ µ)R ≥ λR ∨ µR ∀λ, µ ∈ IX ,

(4) (λ ∧ µ)R ≤ λR ∧ µR ∀λ, µ ∈ IX ,

(5) λ ≤ µ implies that λR ≤ µR and λR ≤ µR ∀λ, µ ∈ IX ,

(6) (λ ∨ µ)R ≥ λR ∨ µR ∀λ, µ ∈ IX ,

(7) (λ ∧ µ)R ≤ λR ∧ µR ∀λ, µ ∈ IX ,

(8) (λR)c = (λc)R and (λR)
c = (λc)R

(9) (λR)
R ≥ λR ≥ (λR)R

(10) (λR)R ≤ λR ≤ (λR)R

Proof. From Equation 7 and Lemma 2.4, we get easily the proof of all these results.

Remark 2.8. As in the usual case, whenever R is a reflexive fuzzy relation on X, then we have λ∗ ≤ λ ≤ λ∗ ∀λ ∈ IX .
In this case, the equality hold in both of (6) and (7) in Lemma 2.4, and thus the equality hold in both of (6) and (7) in
Lemma 2.7.

Moreover, as in the usual case, if R is a reflexive and transitive fuzzy relation, then (λR)R = λR and (λR)R = λR.
If R is considered to be a reflexive fuzzy relation on X, then a fuzzy pretopology τR on the rough fuzzy approximation

space (X,R) is generated by the following:

τR = {ν ∈ IX : ν = νR} or τR = {ν ∈ IX : νc = (νc)R}. (9)

That is, the condition (λR)R = λR ∀λ ∈ IX is not satisfied.
If R is considered to be a reflexive and transitive fuzzy relation on X, then a fuzzy topology τR is generated on the

rough fuzzy approximation space by Equation 9 as well. That is, the condition (λR)R = λR, ∀λ ∈ IX is satisfied.

In the following, it will be defined a weaker definition than Definition 2.2.



32 I. Ibedou, S. E. Abbas

Definition 2.9. For every x ∈ X, define λ∗∗, λ
∗∗ ∈ IX of a fuzzy set λ ∈ IX by:

λ∗∗(x) =


(
∨

z∈X

< z > R (x))c if < x > R ∧ λc ̸∈ ℓ and < x > R ∧ λ ̸∈ ℓ,

1 if < x > R ∧ λc ∈ ℓ
0 if < x > R ∧ λc ̸∈ ℓ and < x > R ∧ λ ∈ ℓ

(10)

λ∗∗(x) =


∨

z∈X

< z > R (x) if < x > R ∧ λ ̸∈ ℓ and < x > R ∧ λc ̸∈ ℓ,

0 if < x > R ∧ λ ∈ ℓ
1 if < x > R ∧ λ ̸∈ ℓ and < x > R ∧ λc ∈ ℓ

(11)

The roughness of a fuzzy set λ ∈ IX is defined by:

λ = λ ∧ λ∗∗ and λ̄ = λ ∨ λ∗∗. (12)

where λ is the lower fuzzy set of λ and λ̄ is the upper fuzzy set of λ.
The boundary fuzzy region of λ is B(λ) given by: B(λ) = λ̄ ∧̄ λ.
All the results given in the section are satisfied exactly, only the main difference is coming from Equation 4. That

is, R < x > R ≤ < x > R ∀x ∈ X. Hence,
Definition 2.2 gives us a boundary region fewer than that of Definition 2.9.

Remark 2.10. It is clear by definitions that:

(1) λ∗∗ ≤ λ∗, and then λ ≤ λR,

(2) λ∗ ≤ λ∗∗, and then λR ≤ λ̄.

Example 2.11. From Example 2.6 in case of ν ∈ ℓ ⇔ ν ≤ 0.4, we get that

λ∗ = {0.2, 0.2, 0.6, 0.5}, λ∗ = {0.8, 0.8, 0.4, 0.5},

and then λR = {0.2, 0.8, 0.6, 0.6}, λR = {0.1, 0.8, 0.4, 0.5}. That is, λB = {0.2, 0.2, 0.6, 0.5}, and moreover α(λ) =
{0.9, 1, 0.8, 0.9}, and thus Inf(α(λ)) = 0.8.

If we used Definition 2.9, we get that λ∗∗ = {0.6, 0.2, 0.6, 0.5}, λ∗∗ = {0.4, 0.8, 0.4, 0.5}, and then λ̄ = {0.6, 0.8, 0.6, 0.6},
λ = {0.1, 0.8, 0.4, 0.5}. That is, B(λ) = {0.6, 0.2, 0.6, 0.5}. Hence, the boundary region of Definition 2.2 is better than
the boundary region of Definition 2.9.

In case of ν ∈ ℓ ⇔ ν ≤ 0.5, we get that λ∗ = {1, 0, 1, 1}, λ∗ = 0, and then λR = {0.1, 0.8, 0.4, 0.6}, λR =
{0.1, 0, 0.4, 0.6}. That is, λB = {0.1, 0.8, 0.4, 0.4}. Moreover, α(λ) = {1, 0.2, 1, 1} and Inf(α(λ)) = 0.2.

Note that: if we discussed the crisp case or the classical case, then we have R as a classical binary relation on X
that has at least R(x, y) = 1 for some x, y ∈ X and an ideal ℓ = {0}. Hence, the first branch in Equation 5 goes to
zero, and the first branch in Equation 6 goes to one. Thus, Definitions 2.2 and Definition 2.9 will be as follow:

λ∗(x) =

{
1 if R < x > R ∧ λc = 0
0 otherwise

λ∗(x) =

{
1 if R < x > R ∧ λ ̸= 0,
0 otherwise

λ∗∗(x) =

{
1 if < x > R ∧ λc = 0
0 otherwise

λ∗∗(x) =

{
1 if < x > R ∧ λ ̸= 0,
0 otherwise.

That means Definition 2.2 will be the same meaning of rough sets in the ordinary case using the intersection of after
and before sets of a classical binary relation R on X. Also, Definition 2.9 will be the same meaning in the ordinary
case only using the after sets of the classical binary relation R on X.
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Remark 2.12. From Equations 5, 6, we get that:

(1) if we have an equivalence fuzzy relation R and ℓ = ℓ◦ on X, then our definition will be the fuzzification of the
main definition given by Pawlak in [14].

(2) if we have a symmetric fuzzy relation R on X and the fuzzy ideal ℓ = ℓ◦ on X, then our definition will be the
fuzzification of the definition given by Yao [19] and also the definition of Allam [1].

(3) if we have a reflexive and symmetric fuzzy relation R on X, then our definition will be the fuzzification of the
definition given by Kandil [9].

(4) If we replace the fuzzy ideal ℓ on X by the fuzzy ideal ℓ = ℓ◦, then our definition will be the fuzzification of the
definition given by Kozae [11].

In the crisp case, we get exactly the definitions in the ordinary case as given in [1, 9, 11, 14, 19], respectively.

Pawlak [14] Yao [19], Allam [1]

Definition 2.2

ggPPPPPPPPPPPP

wwnnnnnnnnnnnn

))RRRRRRRRRRRRR

55lllllllllllll

Kandil [9] Kozae [11]

Example 2.13. In Example 2.11, we computed λR, λ
R for a fuzzy set λ = {0.1, 0.8, 0.4, 0.6} as follow:

λR = {0.1, 0.8, 0.4, 0.5}, λR = {0.2, 0.8, 0.6, 0.6},

and thus λB = {0.2, 0.2, 0.6, 0.5}.
If we restricte the fuzzy ideal ℓ to ℓ◦, then the roughness computed for λ can not be restricted to a fuzzification of

any of the previous definitions in [1, 9, 14] because R here is not reflexive, not symmetric and not transitive. But, the
roughness computed for λ is exactly the fuzzification of the definitions of [11, 19].

Now, let R be a reflexive, symmetric not transitive fuzzy relation on X in the following.

R a b c d

a 1 0 0.1 0
b 0 1 0.1 0
c 0.1 0.1 1 0
d 0 0 0 1

Then, this example gives a fuzzification of the definition of [9]. If ℓ = ℓ◦, then the roughness for λ will be the
fuzzification of these computed with the definitions of [1, 11, 19] but not given in the sense of [14].

If we suggested R as follows:
R a b c d

a 1 0.5 0.1 0
b 0.5 1 0.1 0
c 0.1 0.1 1 0
d 0 0 0 1

Then, R is an equivalence relation, and the roughness of λ will be the fuzzification of [9], and moreover if ℓ = ℓ◦,
then it will be the fuzzification of all definitions [1, 11, 14, 19]. Hence, according to the fuzzy relation and the fuzzy
ideal, the computation of roughness of a fuzzy set is changed.
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For a fuzzy set λ in a rough fuzzy approximation space (X,R) where R is a reflexive fuzzy relation, we can define a
Čech fuzzy interior operator intRλ ∈ IX and a Čech fuzzy closure operator clRλ ∈ IX (that means intR(intRλ) ̸= intRλ)
as follow:

intRλ = λR, clRλ = λR. (13)

Also, from Equation 12, we can define for any λ ∈ IX a Čech fuzzy interior operator IRλ ∈ IX and a Čech fuzzy
closure operator CRλ ∈ IX as follow:

IRλ = λ, CRλ = λ̄. (14)

It is clear from Remark 2.10 that: the Čech fuzzy interior operator intR and the Čech fuzzy closure operator clR have
the following properties related to the Čech fuzzy interior operator IR and the Čech fuzzy closure operator CR:

intRλ ≥ IRλ and clRλ ≤ CRλ ∀λ ∈ IX . (15)

Note that: the fuzzy operators clR , CR of λ = {0.1, 0.8, 0.4, 0.6} in Example 2.6 (where R was not reflexive) are
not even Čech fuzzy closure operators while both are computed as

clRλ = λR = {0.2, 0.8, 0.6, 0.6} ≤ CRλ = λ̄ = {0.6, 0.8, 0.6, 0.6}.

Considering R a reflexive and transitive fuzzy relation, we have a fuzzy interior operator and a fuzzy closure operator
on (X,R) generating a fuzzy topology τR as in Equation 9. In this case, the usual properties of fuzzy interior and
fuzzy closure operators are satisfied as follow:

Lemma 2.14. The following conditions are satisfied.

(1) intR0 = 0, intR1 = 1,

(2) intR(ν) ≤ ν ∀ν ∈ IX ,

(3) ν ≤ η =⇒ intR(ν) ≤ intR(η) ∀ν, η ∈ IX ,

(4) intR(ν ∨ η) ≥ intR(ν) ∨ intR(η), intR(ν ∧ η) = intR(ν) ∧ intR(η) ∀ν, η ∈ IX ,

(5) intR(intR(ν)) = intR(ν) ∀ν ∈ IX .

Proof. (1) and (2) are clear.
From (5) in Lemma 2.7, we get (3).
According to Remark 2.8, and from (3) and (7) in Lemma 2.7, we get (4).
Also, by Remark 2.8, and from (9) in Lemma 2.7, we get (5).

Thus, intRλ is the fuzzy interior of λ in the rough fuzzy approximation space (X,R) generating a fuzzy topology
defined by:

ϖR = {ν ∈ IX : ν = intR(ν)}.

Note that IRλ of any λ ∈ IX in the rough fuzzy approximation space (X,R) with R as a reflexive and transitive
fuzzy relation is also generating a fuzzy topology defined by:

ωR = {ν ∈ IX : ν = IR(ν)},

and thus this is coarser than that one generated by intRλ. That is, ωR ≤ ϖR.
Note that:

clR(ν
R) = clR(ν) ∀ν ∈ IX , intR(νR) = intR(ν) ∀ν ∈ IX ,

intR(ν
c) = (clR(ν))

c and clR(ν
c) = (intR(ν))

c ∀ν ∈ IX .

Similarly, where R is a reflexive and transitive fuzzy relation on X we have the following:

Lemma 2.15. The fuzzy closure operator satisfy the following conditions:

(1) clR0 = 0, clR1 = 1,

(2) clR(ν) ≥ ν ∀ν ∈ IX ,
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(3) ν ≤ η =⇒ clR(ν) ≤ clR(η) ∀ν, η ∈ IX ,

(4) clR(ν ∧ η) ≤ clR(ν) ∧ clR(η), clR(ν ∨ η) = clR(ν) ∨ clR(η) ∀ν, η ∈ IX ,

(5) clR(clR(ν)) = clR(ν) ∀ν ∈ IX .

Proof. Similar to Lemma 2.14.

Hence, from clR(ν
c) = (intR(ν))

c, clR is a fuzzy closure operator generating the same fuzzy topology given above
as follows:

ϖR = {ν ∈ IX : νc = clR(ν
c)}.

As an application of these generalized rough fuzzy sets, we discuss rough fuzzy connected spaces using fuzzy closure
operators where R is reflexive and transitive fuzzy relation.

3 Connectedness in rough fuzzy approximation spaces

Definition 3.1. Let (X,R) be a rough fuzzy approximation space and ℓ a fuzzy ideal on X. Then,

(1) the fuzzy sets µ, ν ∈ IX are called rough fuzzy approximation separated if

clR(µ) ∧ ν = µ ∧ clR(ν) = 0.

(2) A fuzzy set η ∈ IX is called rough fuzzy approximation disconnected (RF -disconnected) set if there exist rough
fuzzy approximation separated sets µ, ν ∈ IX , such that µ∨ν = η. A fuzzy set η is called rough fuzzy approximation
connected (RF -connected) if it is not rough fuzzy approximation disconnected (RF -disconnected). In other words,
if there are no rough fuzzy approximation separated sets µ, ν except µ = 0, or ν = 0.

(3) (X,R) is called rough fuzzy approximation disconnected (RF -disconnected) space if there exist rough fuzzy approx-
imation separated sets µ, ν ∈ IX , such that µ ∨ ν = 1. A fuzzy approximation space (X,R) is called rough fuzzy
approximation connected (RF -connected) if it is not rough fuzzy approximation disconnected (RF -disconnected).

Remark 3.2. Any two rough fuzzy approximation separated sets µ, ν in IX with respect to the fuzzy closure operator CR

defined by Equations 12, 14 are also rough fuzzy approximation separated sets as well from Equation 15. That is, rough
fuzzy approximation disconnectedness with respect to the fuzzy closure operator CR implies rough fuzzy approximation
disconnectedness and thus, rough fuzzy approximation connectedness implies rough fuzzy approximation connectedness
with respect to the fuzzy closure operator CR.

Example 3.3. Let X = {a, b, c, d}, R a reflexive and transitive fuzzy relation defined by

R a b c d

a 1 0 0.1 0
b 0 1 0.1 0
c 0 0 1 0
d 0 0 0.1 1

< a > R = {1, 0, 0.1, 0}, < b > R = {0, 1, 0.1, 0}, < c > R = {0, 0, 0.1, 0}, < d > R = {0, 0, 0.1, 1} and
R < a >= {0.1, 0, 0, 0}, R < b >= {0, 0.1, 0, 0}, R < c >= {0.1, 0.1, 1, 0.1}, R < d >= {0, 0, 0, 0.1}. Then,
R < a > R = {0.1, 0, 0, 0}, R < b > R = {0, 0.1, 0, 0}, R < c > R = {0, 0, 0.1, 0}, R < d > R = {0, 0, 0, 0.1}.
Define a fuzzy ideal ℓ on X so that ν ∈ ℓ ⇔ ν ≤ 0.3, then for any λ ∈ IX we have λ∗ = 0. That is, λR =

clRλ = λ for any λ ∈ IX . Hence, we can find λ = {0, 0, 0.2, 0.2}, µ = {0.3, 0.3, 0, 0} so that the fuzzy set (λ ∨ µ) =
{0.3, 0.3, 0.2, 0.2} is a rough fuzzy set for which clRλ ∧ µ = λ ∧ clRµ = λ ∧ µ = 0. Thus, {0.3, 0.3, 0.2, 0.2} is a rough
fuzzy disconnected set.

The choice of R and ℓ played the main role of being λ∗ = 0. That is, λR = clRλ = λ for any λ ∈ IX , and so we
could find a pair of rough fuzzy separated sets as shown above, and thus we found a fuzzy set which is a rough fuzzy
disconnected.

If R is taken without these restrictions in the above choice, and ℓ is coarser enough, then we can not find any pair
of rough fuzzy separated sets, and thus the whole space will be rough fuzzy connected space.
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Remark 3.4. Let (X,R) be a rough fuzzy approximation space. Then, (X,R) is a rough fuzzy connected which implies
that it is a rough fuzzy connected with respect to the fuzzy closure operator CR as defined in Equations 12, 14.

Proposition 3.5. Let (X,R) be a rough fuzzy approximation space and ℓ a fuzzy ideal on X. Then, the following are
equivalent.

(1) (X,R) is rough fuzzy approximation connected.

(2) µ ∧ ν = 0, intR(µ) = µ, intR(ν) = ν and µ ∨ ν = 1 imply µ = 0 or ν = 0.

(3) µ ∧ ν = 0, clR(µ) = µ, clR(ν) = ν and µ ∨ ν = 1 imply µ = 0 or ν = 0.

Proof. (1) ⇒ (2): Let µ, ν ∈ IX with intR(µ) = µ, intR(ν) = ν such that µ ∧ ν = 0 and µ ∨ ν = 1. Then,
clR(µ) = clR(ν

c) = νc = µ, clR(ν) = clR(µ
c) = µc = ν.

Hence, clR(µ) ∧ ν = µ ∧ clR(ν) = µ ∧ ν = 0. That is, µ, ν are rough fuzzy approximation separated sets with
µ ∨ ν = 1. But (X,R) is rough fuzzy approximation connected which implies that µ = 0 or ν = 0.

(2) ⇒ (3): (3) ⇒ (1): Clear.

Proposition 3.6. Let (X,R) be a rough fuzzy approximation space and ℓ a fuzzy ideal on X. Then, for µ ∈ IX , the
following are equivalent.

(1) µ is a rough fuzzy approximation connected set.

(2) If ν, ρ are rough fuzzy approximation separated sets with µ ≤ (ν ∨ ρ), then µ ∧ ν = 0 or µ ∧ ρ = 0.

(3) If ν, ρ are rough fuzzy approximation separated sets with µ ≤ (ν ∨ ρ), then µ ≤ ν or µ ≤ ρ.

Proof. (1) ⇒ (2): Let ν, ρ be rough fuzzy approximation separated sets with µ ≤ (ν ∨ ρ). That is, clR(ν) ∧ ρ =
clR(ρ) ∧ ν = 0 with µ ≤ (ν ∨ ρ). Since

(clR(µ ∧ ν) ∧ (µ ∧ ρ) = clR(µ) ∧ clR(ν) ∧ (µ ∧ ρ) = clR(µ) ∧ µ ∧ clR(ν) ∧ ρ = µ ∧ 0 = 0,

clR(µ ∧ ρ) ∧ (µ ∧ ν) = clR(µ) ∧ clR(ρ) ∧ (µ ∧ ν) = clR(µ) ∧ µ ∧ clR(ρ) ∧ ν = µ ∧ 0 = 0.

Then, (µ ∧ ν) and (µ ∧ ρ) are rough fuzzy approximation separated sets with

µ = (µ ∧ ν) ∨ (µ ∧ ρ).

But µ is rough fuzzy approximation connected, that is

µ ∧ ν = 0 or µ ∧ ρ = 0.

(2) ⇒ (3): If µ ∧ ν = 0, µ ≤ (ν ∨ ρ), that is µ = µ ∧ (ν ∨ ρ) = (µ ∧ ν) ∨ (µ ∧ ρ) = µ ∧ ρ, and thus µ ≤ ρ. Also, if
µ ∧ ρ = 0, then µ ≤ ν.

(3) ⇒ (1): Let ν, ρ be rough fuzzy approximation separated sets with µ = ν ∨ ρ. Then, µ ≤ ν or µ ≤ ρ.
If µ ≤ ν, then

ρ = (ν ∨ ρ) ∧ ρ = µ ∧ ρ ≤ ν ∧ ρ ≤ clR(ν) ∧ ρ = 0.

Also, if µ ≤ ρ, then
ν = (ν ∨ ρ) ∧ ν = µ ∧ ν ≤ ρ ∧ ν ≤ clR(ρ) ∧ ν = 0.

Hence, µ is a rough fuzzy approximation connected set.

Define a rough fuzzy approximation continuous mapping f : (X,R) → (Y,R∗) by

clR(f
−1(ν)) ≤ f−1(clR∗ν) or intR(f

−1(ν)) ≥ f−1(intR∗ν) ∀ν ∈ IY .

Theorem 3.7. Let (X,R), (Y,R∗) be rough fuzzy approximation spaces, ℓ, ℓ∗ be fuzzy ideals on X,Y respectively and f :
(X,R) → (Y,R∗) be a rough fuzzy approximation continuous mapping. Then, f(η) ∈ IY is a rough fuzzy approximation
connected set if η is a rough fuzzy approximation connected set in X.
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Proof. Let ν, ρ ∈ IY be rough fuzzy approximation separated sets with f(η) = ν ∨ ρ. That is,

clR∗(ν) ∧ ρ = clR∗(ρ) ∧ ν = 0.

Then, η ≤ (f−1(ν) ∨ f−1(ρ)), and that f is rough fuzzy approximation continuous, we get that

clR(f
−1(ν)) ∧ f−1(ρ) ≤ f−1(clR∗(ν)) ∧ f−1(ρ) = f−1(clR∗(ν) ∧ ρ) = f−1(0) = 0,

and in a similar way, we have

clR(f
−1(ρ)) ∧ f−1(ν) ≤ f−1(clR∗(ρ)) ∧ f−1(ν) = f−1(clR∗(ρ) ∧ ν) = f−1(0) = 0.

Hence, f−1(ν) and f−1(ρ) are rough fuzzy approximation separated sets in X with η ≤ (f−1(ν) ∨ f−1(ρ)). But from
(3) in Proposition 3.6, we get that η ≤ f−1(ν) or η ≤ f−1(ρ), which means that f(η) ≤ ν or f(η) ≤ ρ. Thus, from that
η is rough fuzzy approximation connected set in X, and again from (3) in Proposition 3.6, we get that f(η) is rough
fuzzy approximation connected in Y .

Definition 3.8. Let (X,R) be a rough fuzzy approximation space and λ ∈ IX . Then, λ is called rough fuzzy component
(RF -component) if λ is a maximal RF -connected set in X, that is, if µ ≥ λ and µ is RF -connected set, then λ = µ.

Proposition 3.9. Let λ ̸= 0 be RF -connected set in (X,R) and λ ≤ µ ≤ clR(λ). Then, µ is RF -connected as well.

Proof. Let ν, ρ be RF -separated sets in IX such that µ = ν ∨ ρ. That is,

clR(ν) ∧ ρ = clR(ρ) ∧ ν = 0.

Since λ ≤ µ implies that λ ≤ (ν ∨ ρ) and λ is RF -connected, then from (3) in Proposition 3.6, we have λ ≤ ν or λ ≤ ρ.
From µ ≤ clR(λ) we get that:
If λ ≤ ν, then

ρ = (ν ∨ ρ) ∧ ρ = µ ∧ ρ ≤ clR(λ) ∧ ρ ≤ clR(ν) ∧ ρ = 0.

If λ ≤ ρ, then
ν = (ν ∨ ρ) ∧ ν = µ ∧ ν ≤ clR(λ) ∧ ν ≤ clR(ρ) ∧ ν = 0.

Hence, µ is RF -connected.

4 Conclusions

In this paper, it is given a generalization of rough fuzzy sets based on a fuzzy ideal ℓ defined on a fuzzy approximation
space (X,R). Fuzzy interior and fuzzy closure operators are deduced in the general sense. In a proposed future work,
a new generalization of rough fuzzy sets based on a fuzzy ideal ℓ will be introduced on a fuzzy approximation space
(X,R) but in sense of S̆ostak. Thus, the proposed generalization will depend on the degrees r ∈ [0, 1] and a new form
of fuzzy relation R beside the fuzzy ideal ℓ where both are defined on the fuzzy approximation space.
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